Modele de taux d`intérêt vasicek

Le modèle de taux d`intérêt de Vasicek valorise le taux d`intérêt instantané à l`aide de l`équation suivante: bien qu`il ait été considéré comme un grand pas en avant dans les équations financières prédictives, le principal inconvénient du modèle qui est venu à la lumière depuis le Global crise financière est que le modèle Vasicek ne permet pas au taux d`intérêt de tremper en dessous de zéro. Ce problème a été corrigé dans plusieurs modèles qui ont été développés depuis le modèle Vasicek tel que le modèle exponentiel de Vasicek et le modèle de Cox-Ingersoll-Ross pour estimer les changements de taux d`intérêt. Tarification de l`option obligataire à l`aide du modèle à taux court de Vasicek Tags: taux d`intérêt, R, non classé, Vasicek modèle où WT est un processus de Wiener dans le cadre neutre du risque modélisation du facteur de risque de marché aléatoire, en ce qu`il modélise l`afflux continu de aléatoire dans le système. Le paramètre d`écart type, σ {displaystyle sigma}, détermine la volatilité du taux d`intérêt et, d`une manière, caractérise l`amplitude de l`afflux aléatoire instantané. Les paramètres typiques b, a {displaystyle b, a} et σ {displaystyle sigma}, ainsi que la condition initiale r 0 {displaystyle r_ {0}}, caractérisent complètement la dynamique et peuvent être rapidement caractérisés comme suit, en supposant qu`un {displaystyle a} soit non négatif: le modèle de Vasicek a été le premier à capturer une réversion moyenne, une caractéristique essentielle du taux d`intérêt qui le distingue des autres prix financiers. Ainsi, contrairement aux cours des actions, par exemple, les taux d`intérêt ne peuvent pas augmenter indéfiniment. C`est parce que, à des niveaux très élevés, ils entraveraient l`activité économique, entraînant une baisse des taux d`intérêt. De même, les taux d`intérêt ne diminuent généralement pas en dessous de 0. En conséquence, les taux d`intérêt se déplacent dans une fourchette limitée, montrant une tendance à revenir à une valeur à long terme. Cette solution de forme fermée pour une obligation de coupon zéro rend nos vies beaucoup plus facile car nous n`avons pas besoin de calculer l`attente dans le cadre de la mesure martingale pour trouver le prix d`une caution. En outre, il nous permettra de calculer facilement la courbe de rendement implicite par le modèle.

Si nous notons que le modèle de taux d`intérêt de Vasicek est utilisé dans l`économie financière pour estimer les voies potentielles pour les changements de taux d`intérêt futurs. Le modèle stipule que le mouvement des taux d`intérêt n`est affecté que par des mouvements aléatoires (stochastiques) du marché. En l`absence de chocs du marché (c.-à-d., lorsque dWt = 0), le taux d`intérêt reste constant (RT = b). Quand RT < b, le facteur de dérive devient positif, ce qui indique que le taux d`intérêt augmentera vers l`équilibre. Il est important de noter que l`équation ne peut tester qu`un seul facteur de risque de marché à la fois. Ce modèle stochastique est souvent utilisé dans l`évaluation des taux d`intérêt à terme et est parfois utilisé dans la résolution pour le prix de diverses obligations difficiles à valeur.

¡Contactanos!